Comparison of the pain suppressive effects of clinical and experimental painful conditioning stimuli.
نویسندگان
چکیده
Studies in healthy volunteers suggested that the classical counterirritation phenomenon (i.e. pain inhibits pain effect) might depend on diffuse noxious inhibitory controls (DNIC), which modulate the spinal transmission of nociceptive signals. In the present study, we sought to determine whether similar mechanisms were at play in patients with different subtypes of neuropathic pain. Ten patients presenting with a traumatic peripheral nerve injury associated with dynamic mechano-allodynia (i.e. pain triggered by brushing) or static mechano-allodynia (i.e. pain triggered by light pressure stimuli) were included in this study. To investigate counterirritation mechanisms in these patients, we analysed the RIII nociceptive flexion reflex and concomitant painful sensation elicited by electrical stimulation of the sural nerve. We compared the effects of heterotopic 'clinical' conditioning stimuli (i.e. pain evoked by brushing or pressure within the allodynic area located in the upper limb or chest) to those of experimental heterotopic noxious stimuli (HNCS) consisting of a cold pressor test or tourniquet test applied to the normal upper limb. Static mechano-allodynia induced inhibitions of both the RIII reflex and the concomitant painful sensation. These effects were similar to those induced by HNCS and were probably due to an increased activation of DNIC. In contrast, in patients with dynamic allodynia, brushing within the allodynic area reduced the pain sensation at the foot, but did not inhibit the electrophysiological responses, suggesting that in this case the counterirritation effect may take place at the supraspinal level. Thus, the mechanisms of counterirritation are not univocal, but depend on the pathophysiological mechanisms of clinical pain.
منابع مشابه
تاثیرات مواجهه مزمن استات سرب بر واکنش به تحریکات دردناک در موش سوری
Introduction: Influences of lead on functions of many organ systems are known, but less experimental studies has been done on influences over the behavior, including pain sensation. This study was carried out to reveal possible changes in the onset and intensity of reactions to painful stimuli in mice, after long-term exposure to lead acetate. Methods: In this experimental study, 24 adult ma...
متن کاملPain by Association? Experimental Modulation of Human Pain Thresholds Using Classical Conditioning.
UNLABELLED A classical conditioning framework is often used for clinical reasoning about pain that persists after tissue healing. However, experimental studies demonstrating classically conditioned pain in humans are lacking. The current study tested whether non-nociceptive somatosensory stimuli can come to modulate pain thresholds after being paired with painful nociceptive stimuli in healthy ...
متن کاملHow the number of learning trials affects placebo and nocebo responses.
Conditioning procedures are used in many placebo studies because evidence suggests that conditioning-related placebo responses are usually more robust than those induced by verbal suggestions alone. However, it has not been shown whether there is a causal relation between the number of conditioning trials and the resistance to extinction of placebo and nocebo responses. Here we test the effects...
متن کاملNeurophysiological Correlates of Nociceptive 1 Heterosynaptic Long - Term Potentiation in Humans
39 Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase 40 of synaptic strength. LTP is also present in the nociceptive system and is believed to be one 41 of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an 42 increased response in pain perception can be induced in humans using high frequency 43 electrical stimu...
متن کاملPain facilitates tactile processing in human somatosensory cortices.
Touch and pain are intimately related modalities. Despite a substantial overlap in their cortical representations interactions between both modalities are largely unknown at the cortical level. We therefore used magnetoencephalography and selective nociceptive cutaneous laser stimulation to investigate the effects of brief painful stimuli on cortical processing of touch. Using a conditioning te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 126 Pt 5 شماره
صفحات -
تاریخ انتشار 2003